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8Charles University, Faculty of Mathematics and Physics,

Center for Particle Physics, Prague, Czech Republic
9Czech Technical University in Prague, Prague, Czech Republic

10Center for Particle Physics, Institute of Physics,
Academy of Sciences of the Czech Republic, Prague, Czech Republic

11Universidad San Francisco de Quito, Quito, Ecuador
12Division of High Energy Physics, Department of Physics,

University of Helsinki and Helsinki Institute of Physics, FIN-00014, Helsinki, Finland
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19IPHC, Université de Strasbourg, CNRS/IN2P3, Strasbourg, France
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In the standard model (SM), electroweak symmetry
breaking is achieved through the introduction of a sin-
gle scalar doublet field and predicts the existence of a
single neutral scalar boson [1–6]. However, extensions
of the SM exist with richer phenomenology. Introduc-
ing a second Higgs doublet, such as in Type II 2-Higgs
Doublet Models (2HDM) [7], leads to multiple scalar
bosons and can give scenarios with enhanced couplings
to down-type fermions. Supersymmetry is a plausible
extension to the SM that introduces an additional sym-
metry between fermions and bosons. The two Higgs bo-
son doublets in the minimal supersymmetric standard
model (MSSM) [8, 9] lead to five physical Higgs bosons:
three neutral (collectively denoted as φ): h, H , and A;
and two charged: H+ and H−. At leading order the
MSSM is a Type II 2HDM model, and two parameters
are sufficient to describe the Higgs sector. These are con-
ventionally chosen as the ratio of the two Higgs doublet
vacuum expectation values, tanβ, and, MA, the mass of
the pseudoscalar boson, A. The couplings to the down-
type fermions are enhanced by a factor of tanβ relative
to those in the SM. Thus, the main decay mode is φ → bb,
with branching fractions near 90% at leading order (the
remainder being mostly φ → τ+τ−). While searches
for τ -lepton-pair final states at hadron colliders are rel-
atively insensitive to higher-order radiative corrections,
due to cancellations between the production and decay
processes, this is not the case for decays to bb. Thus,
information from decays to bb̄ together with stringent
limits from decays to τ+τ− can constrain higher-order ef-
fects and yield additional information about electroweak
symmetry breaking, supersymmetry or other new physics
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beyond the SM with similar final states such as pair pro-
duction of color octet scalars [12–14].

Since an inclusive search for φ → bb is difficult due
to large multijet backgrounds, these searches rely on the
case where the φ boson is produced in association with
one or more b quarks. This final state with at least three
b quarks represents a powerful search channel, with the
third b jet providing additional suppression of the large
multijet background at a hadron collider.

MSSM Higgs boson production has been studied at the
CERN LEP e+e− collider excluding Mh,A < 93 GeV for
all tanβ values [15]. The CDF [16–18] and D0 [19–28]
collaborations extended such searches to higher masses
and for large tanβ. The most stringent upper limits on
tan β in searches for neutral Higgs production for masses
above the LEP bounds come from searches in final states
with τ leptons pair produced at the Large Hadron Col-
lider [29–31].

The results reported in this Article make use of pp̄ col-
lisions at a center of mass energy of 1.96 TeV. The data,
corresponding to integrated luminosities of 2.6 fb−1 and
5.2 fb−1 , were collected during Run II at the Fermilab
Tevatron Collider by the CDF and D0 collaborations, re-
spectively. The combination of searches for neutral Higgs
bosons in final states with three or more b jets [18, 25] is
presented.

The CDF and D0 detectors are described in Ref. [32–
35]. A brief outline of the reconstruction of the final
states and event selection used in these searches fol-
lows. A cone algorithm [36] with a radius of R =
√

(∆y)2 + (∆ϕ)2 = 0.7 (CDF) and 0.5 (D0), where y
is the rapidity and ϕ the azimuthal angle, is used to re-
construct jets from energy deposition in the calorimeters.
Identification of jets arising from b-quark fragmentation
(b-tagging) uses an algorithm based on reconstructing
secondary vertices of charged particles displaced from the
pp̄ interaction vertex at CDF [37] and a neural network
combining lifetime information from secondary vertices
and the minimum distance of approach of charged parti-
cle trajectories to the primary interaction at D0 [38].

Events are selected at CDF with dedicated online event
selections (triggers) requiring at least two jets and us-
ing b-tagging information, while at least three jets are
required at D0. For most of the data collected at D0,
b-tagging information is also used in the trigger decision.
Events are selected offline with at least three jets within
the fiducial region. This is defined by requirements on
the momentum transverse to the proton beam direction,
pT , and detector pseudorapidity, ηdet = − ln(tan(θ/2)),
of jets, where θ is the polar angle with respect to the
proton beam direction and an origin at the center of the
detector: three jets with pT > 20 GeV and |ηdet| < 2.0 at
CDF and three jets with pT > 20 GeV and at least two
jets with pT > 25 GeV, |ηdet| < 2.5 at D0. Events with
more jets are accepted at CDF but only the leading (in
pT ) four jets are used in the analysis. Exclusive channels
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with exactly three or exactly four jets are used at D0.
The signal sample is defined by both experiments requir-
ing at least three b-tagged jets. In the CDF inclusive and
the D0 4-jet channel the two leading jets and at least one
of the third and fourth jets are required to be b tagged.
In addition, a large sample requiring only two b-tagged
jets is used by both experiments to build models of the
multijet backgrounds.

At CDF, the background is modeled using a sum of
templates of the invariant mass distribution of the lead-
ing two jets, representing contributions from different
background modes categorized according to kinematics
and flavor content. The templates are constructed from
events in the double-tagged data sample where at least
one of the leading two jets is b-tagged. The events are
then weighted according to the probability for at least one
of the jets with no b tag to pass the tagging requirements
under three different assumptions as to whether it arises
from a b quark, a c quark or a light quark (or gluon).
This results in six different mass templates. The separa-
tion between the different components is enhanced by us-
ing an additional jet-flavor-sensitive discriminant, xtags,
that makes use of kinematic properties of the charged
particles from secondary vertices associated with each b-
tagged jet.

In the D0 analysis the background model is formed by
correcting the shape of the dijet invariant mass distribu-
tion of a data sample with two b-tagged jets using the
ratio of simulated multijet samples with three b tags and
two b tags. The simulated samples are generated using
alpgen [39] with showering and hadronization carried
out using pythia [40] and detailed simulation of the de-
tector using geant [41]. Their flavor composition, in
terms of the relative numbers of b, c and light jets per
event, is determined from a simultaneous fit to the data
across samples with differing numbers of tagged jets, dif-
ferent b-tagger operating points, and in small intervals
of the scalar sum of the transverse momenta of the jets.
The shape correction is applied as a function of the dijet
invariant mass and the value of a likelihood-ratio discrim-
inant, L, designed to select signal-like events in prefer-
ence to background-like events. Only the two possible
jet pairings from the leading jet plus either the second
or third leading jet are considered when forming Higgs
candidates, and the choice that gives the highest value
of L > 0.65 is selected. If neither pairing in the event
is above this threshold then the event is discarded. Sys-
tematic uncertainties are assessed to take into account
the imperfect modeling of the background simulation.
However, the definition of the correction as a ratio of
distributions significantly reduces the sensitivity of the
final model to these imperfections. Small contributions
to the background from top-quark-pair production are
simulated using alpgen and pythia. Backgrounds from
other sources, such as Z → bb̄ and single-top-quark pro-
duction are negligible.

The efficiency for selecting signal is estimated for both
analyses using events generated with pythia. Associated
production of a φ boson and a b quark, gb → φb, with
subsequent decay φ → bb̄, is used to model the signal.
The signal cross section, experimental acceptance and the
kinematics are corrected to next-to-leading order (NLO)
using mcfm [42, 43], weighting events as a function of
the kinematics of the leading b-quark jet not associated
with the Higgs decay.

Approximately 11 500 events are selected by CDF
with at least three b tags and an estimated product
of signal efficiency and acceptance varying as a func-
tion of Mφ between 0.18% at Mφ = 90 GeV and 0.8%
at Mφ = 200 GeV. Approximately 15 000 and 11 000
events with at least three b-tagged jets are accepted
in the D0 three-jet and four-jet channels, respectively.
The corresponding signal efficiencies for a Higgs of mass
Mφ = 200 GeV are 1.2% and 0.6%.

The channels are combined and exclusion limits set,
using the modified frequentist technique [44, 45], with a
log likelihood ratio (LLR) as test statistic:

LLR = −2 ln
p(X |H1)

p(X |H0)
, (1)

where p represents the probabilities that the data, X ,
are drawn from the background-only (H0), and signal-
plus-background (H1) hypotheses, respectively. The like-
lihoods are constructed from the binned two-dimensional
distribution of the dijet invariant mass versus the xtags

discriminant for CDF and the binned one-dimensional
dijet invariant mass distribution for D0. Theoretical pre-
dictions of the absolute rates for the multijet backgrounds
have large uncertainties. Therefore, additional scale fac-
tors are applied to the background yield in the D0 anal-
ysis and the individual templates in the CDF analysis
and introduced into the likelihood as parameters with no
external constraints. Systematic uncertainties are intro-
duced as either shape or normalization variations to the
model probability density functions. These systematics
are governed by nuisance parameters together with Gaus-
sian constraint terms where appropriate [46]. Sources
of uncertainty related to a common component of the
luminosity determination and the theoretical modeling
of the signal production are considered fully correlated.
All other sources of uncertainty are assumed to be un-
correlated. The modeling of the b-jet-tagging efficiency
and the contamination from light-quark and gluon jets
fake are the dominant sources of uncertainty on the back-
ground model. These are implemented as uncertainties
that affect the shape of the distributions entering the like-
lihood. Additional sub-dominant uncertainties are con-
sidered in the D0 analysis arising in the modeling of the
trigger, jet efficiency, jet energy scale and jet resolution.
While most of those effects have a negligible impact on
the background model, effects that are dependent on the
differences between b, light, and gluon jets can be signif-
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Mφ Obs. Expected (pb)
(GeV) (pb) -2 s.d. -1 s.d. median +1 s.d. +2 s.d.

90 38 30 41 57 81 110
100 43 22 30 42 62 86
110 43 15 20 27 39 53
120 44 12 15 20 29 39
130 25 8.1 9.6 14 19 25
140 26 5.1 7.3 10 14 20
150 18 4.1 5.5 7.4 11 15
160 12 3.3 4.5 6.0 8.5 12
170 9.4 2.5 3.6 5.0 7.0 9.5
180 7.1 2.4 3.2 4.2 6.0 8.2
190 5.7 2.2 2.5 4.0 5.0 7.0
200 5.0 2.0 2.4 3.0 4.4 6.0
210 3.8 1.6 2.2 2.6 3.7 5.0
220 3.3 1.2 1.7 2.2 3.2 4.7
230 2.5 1.0 1.5 2.0 3.0 4.1
240 2.0 0.9 1.2 1.8 2.5 3.5
250 2.0 0.9 1.1 1.6 2.3 3.2
260 1.7 0.7 1.0 1.4 2.2 2.8
270 1.3 0.7 0.9 1.2 2.0 2.4
280 1.1 0.6 0.8 1.1 1.7 2.4
290 0.82 0.6 0.8 1.1 1.9 2.4
300 0.71 0.5 0.7 1.0 1.6 2.3

TABLE I: Observed and expected upper limits at the 95%
C.L. on the product of cross section and branching ratio
σ(gb → φb) × BR(φ → bb), within the acceptance for the
highest pT b quark not arising from the Higgs decay [43]. Ex-
pected limits are given for the median and for ±1 and ±2
standard deviation (s.d.) variations of the background expec-
tation.

icant. Dominant experimental systematic uncertainties
on the signal model can be attributed to luminosity (6%),
b-tagging efficiency (11-18%) and jet energy scale (2-10%
depending on the φ boson mass hypothesis).

Limits on the product of the cross section and the
branching ratio using the LLR test statistic are extracted.
The limits are model-independent, apart from assuming
a single narrow Higgs boson mass peak, dominated by ex-
perimental resolution effects. These are summarized in
Table I, and presented in Fig. 1. The combination gives a
sensitivity that is better than the D0 expected limit alone
by ≈ 25% at Mφ = 100 GeV, steadily falling to < 1%
by Mφ = 300 GeV. Excesses of events above the SM
background expectation are observed for Mφ = 120 and
140 GeV with significances of 2.5 standard deviations and
2.6 standard deviations, respectively. These are driven
by the excesses observed in the individual contributing
analyses of 2.8 standard deviations at Mφ = 150 GeV at
CDF and 2.5 standard deviations at Mφ = 120 GeV at
D0. A standard convention [47] is used to account for the
effect that it is more likely to find a deviation (under the
background-only) hypothesis when several mass regions
are probed compared with only a single hypothesis. The
significance of the excesses in the combined analysis is
reduced to ≈ 2 standard deviations.

Though these limits are the key results of this search,
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FIG. 1: Model independent 95% C.L. upper limits on the
product of cross section and branching ratio for the combined
analyses, assuming a mass degeneracy between two of the
three neutral bosons and a Higgs boson width significantly
smaller than the experimental resolution. The dark and light
shaded regions (color online) correspond to the one and two
standard deviation bands around the median expected limit.

it is interesting to interpret them in terms of constraints
on benchmark models within the MSSM. As a conse-
quence of the enhanced couplings to b quarks at large
tan β, the total width of the Higgs boson increases with
tan β. When this width becomes comparable to the ex-
perimental resolution of 15-20% there is an impact on
the sensitivity of the search. When interpreting the ex-
clusion within the MSSM, the width of the Higgs boson
and the enhancement of the product of cross section and
branching ratio above that of the SM are calculated us-
ing feynhiggs [48–53]. The width is included in the
simulation of the signal as a function of mass and tanβ
by convoluting a relativistic Breit-Wigner function with
the NLO cross section [42]. Additional uncertainties for
these model-specific limits are considered that otherwise
cancel in the model-independent limit. For comparison
these are derived as in previous results [18, 22, 25]: uncer-
tainties on the SM signal cross section are derived from
varying the factorization and renormalization scales by a
factor of two and from uncertainties on the parton distri-
bution functions. The uncertainties assessed from scale
variation are taken to be 10% and the parton distribution
functions contribute an additional 3.5-13%, depending on
the mass hypothesis.

The masses and couplings of the Higgs bosons in the
MSSM depend, in addition to tanβ and MA, on other pa-
rameters through radiative corrections. Limits on tan β
as a function of MA are derived for the mmax

h scenario [54]
that favors the bb̄ final state, assuming a CP-conserving
Higgs sector [55] and a negative value of the Higgs sector
bilinear coupling µ. Figure 2 shows exclusion limits in the
(tan β, MA) plane for this scenario. Adding a further po-
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tential theoretical uncertainty on the signal cross section
of 20%, independent of Mφ, would lead to an increase of
5% in the tanβ limit.
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FIG. 2: 95% C.L. lower limit in the (MA, tanβ) plane for the
mmax

h , µ = −200 GeV, including Higgs boson width effects.
The exclusion limit obtained from the LEP experiments is
also shown.

In summary, the combination of results on neutral
Higgs boson searches in multi-b-jet events from CDF and
D0 has been presented. Upper limits are set on the prod-
uct of the cross section and branching ratio and con-
straints are placed in the (tanβ, MA) plane for a partic-
ular MSSM scenario. This combination, with more than
half the integrated luminosity from the Tevatron still to
be analyzed, provides the most stringent limits on neu-
tral Higgs boson production and decay in the multi-b-jet
mode.
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